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Mass t rans fe r  in an actual porous medium, when no phys icochemica l  in teract ions  occur  between the solution and 
the medium containing it, is cha rac t e r i zed  by mac rod i spe r s ion  taking place in the diffusion flow, as a resu l t  of the 
f i l t ra t ionaI  inhomogeneity of the medium [1, 2]. When the sys tem p a r a m e t e r s  a re  re la ted  in a ce r ta in  way, this p r oce s s  
becomes  predominant  over  the mie rod i spe r s ion  due to d i so rde redness  of the pore s t ruc ture  and comes  to 
cha rac t e r i ze  a lmost  en t i re ly  the dis t r ibut ions  of the concentrat ions in space and t ime.  

We cons ider  the l inear  p rob lem of mass  t r ans fe r  in a sys tem of a l ternat ing l aye r s  of widely different  
pe rmeab i l i t i e s ,  in which the liquid movement  occurs  only along the mos t  pe rmeab le  l aye r s  para l le l  to the 
s t ra t i f icat ion.  The hydrodynamic flow is assumed to be s ta t ionary  and stabil ized,  and subject  to Darcy ' s  l inear  law. 

Elementary analysis shows [1-3] that, in conditions of mass transfer in a filtration flow with layers lying above 

and below, and with values of the Peclet diffusion number such as occur in practice (Npe ~ 103-106), the curvature of 
the , concentration distribution in the direction of the filtration flow movement can be neglected in comparison with the 

curvature of the concentration distribution in the transverse direction, i. e., transfer in the permeable layers occurs 

primarily by forced convection, and in the relatively impermeable layers, as a result of molecular diffusion in the 

free pore space. 

In accordance  with the above assumptions,  the equations of mass  t r ans fe r  for  the pe rmeab le  and re la t ive ly  
impermeab le  l ayers  may be writ ten,  r e spec t ive ly ,  as 

OCo t [ OC+ I OC ] OCo 
=--lD+'~:-x. [ j -- vo (0.1) 

OC+_ 0~C+_ 
n+_ ~ =  D+_ 0 ~  (0.2) 

Here ,  n~_,D+_ are  the effect ive poros i ty  and coeff ic ient  of molecu la r  diffusion in the re l a t ive ly  impermeab le  
l aye r s  lying, r espec t ive ly ,  above or below the pe rmeab le  layer  in question, the ordinates  of the cor responding  
boundaries  being, respec t ive ly ,  %§ and %_ ; m0 and n o a re  the thickness and effect ive poros i ty  of the pe rmeab le  layer ;  
v0 is the veloci ty  of the f i l t ra t ion  flow, moving in the d i rec t ion  of the xl coordinate  (see the figure);  c0 and c._ are  the 
re la t ive  concentra t ions  of the solute in the pe rmeab le  and r e l a t ive ly  impermeab le  layers ;  t is cu r ren t  time; and no and 
Co a re  the means obtained by integrat ion over  the interval  [z~_; x~+l. 

To comple te  the s ta tement  of the problem,  suitable boundary conditions have to be found for  sys tems  (0.1) and 
(0.2), in which the numbers  of equations cor respond  to the numbers  of the two types of layer ;  in par t icu la r ,  a boundary 
condition of the fourth kind is assumed to be sat isf ied on the boundary of the f i l t ra t ion flow with a r e l a t ive ly  
impermeab le  layer .  

i. Isolated two-layer medium. Consider an isolated system consisting of two horizontal layers of essentially 

different permeabilities such that our above assumptions remain valid. In other words, we confine ourselves here to 
solution of the "interior" problem; this will enable us to describe the process most fully in the "pure form," 

independently of the external conditions. 

After imposing "impermeability" conditions on the upper and lower boundaries of the system and introducing the 

generalized independent variables 

~] . D + ~ ,  T D+n0 ( t - -  x, , y 

Eqs. (0.1) and (0.2) for the pe rmeab le  and r e l a t ive ly  impermeab le  l ayers  may be writ ten,  r espec t ive ly ,  as 

oco oc+ co+ ~ - -  0 (1.2) 
0~] ~ y=0 = 0, 0~ Oy 2 
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Here m+ is the thickness of the re la t ive ly  impermeable layer .  

The system of equations (1.2) is completed by means of the conditions 

C ( y , ~ , O ) = O ,  o c o ,  n,T) Oy - -0 ,  C ( y , O , ~ )  = t  

Laplace- t ransforming system (1.2) and using the zero ini t ial  conditions (the f i r s t  of Eqs. (1.3)), 

(1.3) 

we get 

OUOo.q _ ~OU+ v=0 ' OW+Oy 2 p U .  = 0 (1.4) 

Here, 

oo 

U (~1, P) = L { C 01, "r } = P f e-P~C Q1, "~) dr 
o 

by the Carson-Heavis ide  t ransformat ion .  

The general  in tegral  of the second of Eqs. (1.4) can be writ ten as 

U+ = Ash(]fpg) + Bch (]/-py) 

Hence, using the second of conditions (1.3), the f i r s t  of Eqs. (1.4) reduces  to the form 

(1.5) 

dUo -{- Uo}fpthV-p = 0 (1.6) d~ 

Final ly,  using the third of conditions (1.3), the solution of the problem for the permeable  layer  in the image 
space is found to be 

Uo 0], P) = exp [--~] ]/-p th ]/-P-I (1.7) 

The integral form of the function whose Laplace transform is (1.7) can be found from Mellin's inversion formula 

a+~co 

t f If} th ]/-? -[- pv I dp Co (~1, •) = ~ exp [-- ~l --p-- 
a--~co 

(1.8) 

It is easi ly  shown that the integrand of (1.8) is s ingle-valued throughout the region of the complex var iable  p, has 
a s imple pole at p = 0 with res idue  unity, and has an infinity of essent ia l  s ingular i t ies  Pk, located on the negative rea l  
axis:  

Ph = - -  1/4n2 (2k + 1) 2 (k=O, 1, 2 . . . .  ) 

In addition, the integrand sat isf ies  Jordan ' s  lemma,  whence, applying the res idue theorem, (1.8) can be writ ten 
as a se r ies  in 0-functions of a zero argument  and their  der ivat ives  with respect  to some pa rame te r  (see [4] for the 
re levant  definitions).  

A more convenient integral form, from the point of view of numerical computations, is 

3 
2 - -  - ~  ~]Z s h  z - -  s i n z  

C0(~l, T) = 0 . 5  +-~- exp chz-}-cosz 
o 

[i 2 1 shz-Usinz]dz • sin ~-rz --7~]z chz +Cosz 7"  

which may be obtained from (1.8) by a se r i e s  of e lementa ry  t ransformat ions .  

(1.9) 

Next, using (1.5) and the second of conditions (1.3), we obtain the expression 

g.(y ,  n, p) = Uo (n, p)ChO-y)  V~ 
~h V~ 

(1.10) 
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fo r  the i m a g e  of the c o n c e n t r a t i o n  in the r e l a t i v e l y  i m p e r m e a b l e  l a y e r .  

Hence 

C+ (y, % "r) = - - I  Co(rl, "•--e) oO~(V~y; 0 Oy de 
o 

(1.11) 

H e r e  and below;  ,9 l (l = 0, 1, 2, 3) deno te  the 0- funct ions .  

Using (1.10) and (1.11), we can  wr i t e  the di f fus ion f low in the r e l a t i v e l y  i m p e r m e a b l e  l a y e r  as 

is 

x 

OC_.,.~_+ I D+ OC§ [ D+ I Co (rl' T - -  e) 0~'~ (0; 8) 
q+ = - -  D+ O=~ I . . . . .  + = - -  ra-'-'~ O'-y" l,=o = rn---~ ~ Oy~ de 

0 

D+ d 
-- m+ -~-~C0(~, ~ - - e ) ~ 2  (0; e)de (1.12) 

0 

In addit ion,  s t a r t i ng  f r o m  the f i r s t  of Eqs.  (1.2) and (1.9), the d i f fus ion  f low in the r e l a t i v e l y  i m p e r m e a b l e  l a y e r  

oo 

D+ OCo D+ t I' [--~-~]zl shz - - s inz ]  
q* -- m+ 0~1 ~ T ~ exp ch z -~- COS z J 

o 

{ shz--sinz [i 1 shz+sjng] 
X ehz+cosz sin rz =-~-~z chz+cosz' 

shz +sJnz [' ,I shz -~ sin z ]} 
~- chz-~-cosz 60S ~-ItZ --~-I]Z �9 dz ch z + cos z . (1.13) 

F r o m  (1.10), the image  of the i n t e g r a l - m e a n  va lue  of the c o n c e n t r a t i o n  in the r e l a t i v e l y  i m p e r m e a b l e  l a y e r  is  

1 

U** (T1, p) = I U+ (y, ~l, P) dy = Uo (~1, P) ~ p  th V-p 
o 

The corresponding inverse transform can be written as 

1 ,r 

C** (~I, T) = I C+ (y, ~I, T) dy = I Co (TI, ~-- e) ~, (0; e) de 
0 o 

or ,  r e c a l l i n g  (1.6) and (1.9), 

(1.14) 

(1.15) 

C** (~,'r : - -  ~ OCo d e =  2 shz--s~n 
20q -~- exp T~qz chz+cos 
o 0 

~shz- -s inz  . [-i ~ 1 shz-Usinz 
X 1 ch z-~- COS z ch z -~- cos z 

sh~+sirtz [1 2 t s h z + s i n z ] }  dz 
~-I]z chz -~ COS z ~ff" ehz+eosz  COS ~-TZ - -  (1.16) 

2. "Open"  t w o - l a y e r  m e d i u m .  L e t  us c o n s i d e r  in g e n e r a l  t e r m s  the so lu t ion  of the ana logous  p r o b l e m  for  a two-  
l a y e r  m e d i u m  when an idea l ly  "we t t ab le"  m e d i u m  l i e s  beyond the ou t e r  boundary  of the r e l a t i v e l y  i m p e r m e a b l e  l a y e r ,  
so that  an open s y s t e m  is obtained.  I n  o the r  words ,  the c o n c e n t r a t i o n  at the ou te r  boundary  of the t w o - l a y e r  s y s t e m  is  
iden t i ca l  with the c o n c e n t r a t i o n  of the su r round ing  m e d i u m ,  which,  in turn,  is a s s u m e d  to be cons tan t  in space  and 
t ime.  The  boundary  condi t ion  fo r  the ou t e r  boundary  (1.3) now b e c o m e s  

C(~, ~, "0 = 0 (2.1) 

whence ,  us ing  (1.5) and the f i r s t  of Eqs.  (1.4), the i m a g e  of the c o n c e n t r a t i o n  in the p e r m e a b l e  l a y e r  is 

U001, P) = exp[--~l]/-p c t h V ~  (2.2) 

The  i n v e r s e  of the L a p l a c e  t r a n s f o r m  (2.2) can be wr i t t en  in a f o r m  s i m i l a r  to (1.9). Typ ica l ly ,  the l imi t ing  
so lu t ion  of our  p r o b l e m  is 

lim C o = e-~ (2.3) 
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F u r t h e r ,  us ing  (1.5) and condi t ion  (2.1), we obta in  the im age  

U§ (y, ~l, P) = Uo (11, P) sh (t --y ) l/p 
sh V~ 

Hence the concen t r a t i o n  in the r e l a t i v e l y  i m p e r m e a b l e  l aye r  is 

C+ (y, '1, ~) = - -  i Co (~, �9 - -  e) o~3 (%y; ~) de oy 
o 

The image  of the d i f fus ion flow through the outer  bounda ry  of the r e l a t i v e l y  i m p e r m e a b l e  l a y e r  is 

(2.4) 

(2.5) 

or+ [ ~+ o,J+ ~=, D .  uo (4, p) V~ 
L{q+_}=--D Ox---T, . . . . . .  + r , + -  m+ Oy - -  m+ sh l/'p 

The i n v e r s e  of (2.6) is 
-r -c 

q+- = m+ Oy~ 
o o 

The di f fus ion flow in the r e l a t i v e l y  i m p e r m e a b l e  l aye r  is  

x 

r~+ OT 
0 

i , a~3(O;e) 1 
= re+D+ C O (1], "~ - -  e) c~------ff~)T~ae 

o 

(2.6) 

(2.7) 

(2.s) 

The image of the integral-mean value of the concentration in the relatively impermeable layer may be written as 

1 

S = -  + 
o 

whence the original is 

o ' 

3. Asympto t i c  expans ions .  It  is  e a s i l y  seen ,  f r o m  im age  (1.7), that the a sympto t i c  fo rm of the so lu t ion  when ~" 
and ~7 a r e  s m a l l  is  

Co (~1, r )  ~N L-~ {exp [ - -  ~1 V~]  } = erfc [ ~ - ~  ] (3.1) 

It should be mentioned that solution (3.1) was obtained by Lauwerier [3] for the case of an infinitely thick, 
relatively impermeable layer. 

The c o n c e n t r a t i o n  in  the r e l a t i v e l y  i m p e r m e a b l e  l a y e r  and the d i f fus ion flow in this l a y e r  a r e  then, r e spec t i ve ly ,  

C+ (y, ~l, T ) ~  erfc ['~ +Y] (3.2) 
[2 V~J 

q+__ D+ [ ~12 ] 
m+ ] / '~  exp - -  ~ -  (3.3) 

These  a sympto t i c  f o r m s  a r e  v i r t u a l l y  a lways appl icab le  (within an e r r o r  of 5%) when ~" < 0.25, r e g a r d l e s s  of the 
va lues  of ~? and y. Expans ions  (3.1) and (3.3) a r e  a lso appl icab le  for  a r b i t r a r y  va lues  of ~- when V < 0.1, and expans ion  
(3.2) when V + y < 0.1. But an a sympto t i c  expans ion  can be wr i t t en  for  the concen t r a t i on  in the r e l a t i v e l y  i m p e r m e a b l e  
l a y e r ,  for  which no ex t r a  r e s t r i c t i o n  on y is  r equ i r ed .  F o r  this ,  expans ion  (3.1) is  s imp ly  subs t i tu ted  into (1.11). 

A second asymptotic expansion of the solution may be obtained from the following considerations. Recalling the 
general theory of meromorphic functions, image (1.7) may be written as 

oo 

(4, P) exp [ - -  nT  o,§ "+2 ,-'l (3.4) 2p 
Uo ~la~ ~ (2 k + 

555 



The ser ies  in (3.4) is uniformly convergent  to unity in a c i rc le  of radius  Ipl = 2. Hence the asymptotic expansion 
of image (3.4) may be writ ten as 

Fur ther ,  

U0 (B, p) ..~ exp [__ ~__~]2p (3.5) 

5-1 

where I0(x) is the ze ro -order  modified Bessel  function of the f i r s t  kind; the solution can be wri t ten as 

(3.6) 

The function 

C0 (~1, x) ~ ] (2,1, 2~) (3.7) 

,7 (o, . )  = ~ - : I ~-~*o (2 V ~ )  d~ (3.8)  
0 

was obtained by Arzel ius  [5] and Schumann [6] and was very fully investigated by Goldstein [7-11].  

It can be shown that solution (3.7) is obtainable direct ly  from the system of equations (1.2) by putting 

OC§ 
ay ~=o ~- 2 (C+* - -  Co) (3.9) 

$ 
where C+ is the value of the concentrat ion in the central  section of the re la t ive ly  impermeable  layer.  Equation (3.9) 
presupposes a l inear  law of mass  t ransfer ,  analogous to Newton's taw, at the boundary, and in addition, a condition 
that the re la t ively  impermeable  layer  have infinite diffusion conductivity must  be introduced into the ini t ial  system. In 
other words, the ini t ial  sys tem (1.2) must  take the form 

oco =2(C+*--C0), oc+* a~ ~ ~ 2  (Co--C+*) (3.10) 

The following express ions  for the in t eg ra l -mean  values of the concentrat ion in the re la t ive ly  impermeable  layer  
and the diffusion flow in this layer  may be obtained from the image (3.5): 

c+' (~, "0 ~ c+* (~, ~) = 21 :(~+:):o (~ V ~ )  d~ 
0 

= Y (2~1, 2~) -- e:U'+:)Io (4 ]/~-~) (3.11) 

2Z)+ e_:(~,+~)i ~ (4 ( ~ )  (3.12) 
q *  ~ - -  m +  

Numerical  analysis  shows that the asymptotic forms (3.7), (3.11), and (3.12) can be used in prac t ice  (within an 
e r r o r  of 3%) when ~- > ~ > 0.2. 

It may be seen from the Laplace image (2.2) that the asymptotic forms of the solution in the problem of an open 
two-layer  medium in which the pa rame te r s  V and ~- have smal l  values are the same as the corresponding forms (3.1), 
(3.2), and (3.3) for an isolated two-layer  medium. These solutions are pract ica l ly  useful (within an e r r o r  of 5%) when 
~- < 0.15 and ~ and y have a rb i t r a ry  values,  and also when ~? + y > 0.05 and ~- has a r b i t r a r y  values.  

The second asymptotic forms of the solutions for an open two-layer  medium may be obtained by a s i m i l a r  
procedure  to that used for an isolated two-layer  medium. Let us write image (2.2) as 

co 

V 2p ~}. p§ ] (3.13) Uo (n, p) exp L--Vl--~p+6~p+k~J 
The series in (3.13) is uniformly convergent to unity in a circle of radius IpJ = 6. Hence the asymptotic form of 

the concentration in the permeable layer of the open system is 

2p = ( 3 . 1 4 )  
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The remain ing  asymptot ic  f o rms  of the solutions in the open system problem may be found s imi la r ly .  

4. Some genera l iza t ions .  When the p a r a m e t e r s  ~? and T have small  values and no r e s t r i c t i o n  is imposed on the 
capaci t ies  of the re l a t ive ly  impe rmeab le  layers ,  the solutions of the problem for  s trongly different iated sys tems  a re  
the same as (3.1). This makes  it poss ib le  for  mass  t rans fe r  in teract ion between the different  pe rmeab le  layers  via the 
r e l a t ive ly  impermeab le  l aye r s  to be ignored in p rac t i ce  under cer ta in  conditions. 

Our scheme of stratified inhomogeneities should also degenerate with large values of V and ~-. It may be assumed 
that the process can then be described by a diffusion equation with a convective term: 

OC . OC ~ ,  0~C 
N y i -  -]- v - - ~ - - -  u - ~ W = 0  (4.1) 

Here, the effective porosity and effective filtering speed in the quasi-homogeneous layer are, respectively, 

N "n+n+ + "nono V = vo'no (4.2) 
"n.  + ma ' "n.  + "no 

The coeff ic ient  D* in (4.1) is to be regarded  as an effect ive diffusion coefficient ,  while the p rocess  i tself  might be 
t e rmed  m a s s - t r a n s f e r  diffusion, by analogy with the phenomenon of convect ive diffusion. 

Let  us prove our assumption by writ ing the asymptot ic  fo rm of image (3.5) as 

Here, 

U0 0], ~) ~ exp [(1/2 - -  Vl/4 -J- (a ~- t)  ~) I]] (4.3) 

mona .Dot 
U00], ~,)= L-I{Co0], a))}, a =  m+n'----~' o ~ = - - m p n +  

The inve r se  of image (4.3) may be wri t ten as 

Co Oh @ ~ 0,5 {erfc [ (_a _+ i_) ~ -- o)] -b en erfc [ (a + t) ~ + co ]~ (4.4) 
[ 2 ~ l  / 2 ]/-(a--~']~J) 

The asymptot ic  form (4.4) of solution (3.7) may be used (within an e r r o r  of 3%) when T > ~? > 0.1 ( or w > (a + 1) V; 
> 0.1), i. e . ,  in p rac t i ce  it can be used whenever  expansion (3.7) is applicable.  

Express ion  (4.4) is the solution of the diffusion p rob lem (4.1) under the f i r s t  and third of boundary conditions 

(1.3) if we put 

D* - -  m+'na%~ (4.5) 
D+ (,no + ,n+) 

Let us dwell in more  detai l  on the conditions under which expansions (3.7) and (4.4) can be used, To this end, 
cons ider  the physical  s ignif icance of the inequality ~7 < 7. Using (1.1) and a number of t ransformat ions ,  the condition 
under which (3.7) and (4.4) can be used may be wri t ten as 

(mon a + m§ 1 < movot (4.6) 

Hence the initiation of a quas i - s ta t ionary  mode of mass  t ransfe r ,  cha rac t e r i zed  by the mass -exchange  law (3.9), 
is defined by the instant when the volume of f i l te red  liquid pass ing through a fixed unit c ross  sect ion xl exceeds the 
total f ree  capacity of the sys tem.  It was pointed out in [12] that, in the p resen t  terminology,  this condition cor responds  
to the instant when the sum of the i n t eg ra l -mean  instantaneous values of the concentra t ions  in the pe rmeab le  and 
r e l a t ive ly  impe rmeab le  l aye r s  is equal to unity. 

However,  (4.6) is not a suff icient  condition. The entry par t  of the flow must  be cha rac te r i zed  by a sharp 
deformat ion of the diffusion flow in the r e l a t i ve ly  impermeab le  layer ,  caused by the high intensity of the m a s s - r e l e a s e  
p rocess .  The re la t ive  magnitude of this par t  is uniquely de te rmined  by the condition for applicabil i ty of solutions (3.7) 
and (4.4) when V > 0.2. Recal l ing  (1.1), this condition is found to be 

,n.vo : 0.2Ne~ (4.7) 
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where Npe is the Peclet  diffusion number ,  based on the charac te r i s t i c  dimension,  namely,  the thickness of the 
re la t ive ly  impermeable  layer,  and the coefficient of molecular  diffusion in this layer .  

A complete analogy appears here between the phenomenon discussed and the sharp r e s t ruc tu r ing  that takes place 
when a stable concentrat ion profile develops in the liquid i tself  in the entry  par t  close to the boundary of the considered 
region. In addition, these par ts  are  comparable  in size,  though the length of section (4.7) is actually r a the r  too high, 
owing to the fact that under  our assumptions concentrat ion profile deformation is completely ignored. 

In conclusion the author thanks V. M. Shestakov for proposing the topic and valuable comments .  
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