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Mass transfer in an actual porous medium, when no physicochemical interactions occur between the solution and
the medium containing it, is characterized by macrodispersion taking place in the diffusion flow, as a result of the
filtrational inhomogeneity of the medium [1,2]. When the system parameters are related in a certain way, this process
becomes predominant over the microdispersion due to disorderedness of the pore structure and comes to
ch.aracterize almost entirely the distributions of the concentrations in space and time.

We consider the linear problem of mass transfer in a system of alternating layers of widely different
permeabilities, in which the liquid movement occurs only along the most permeable layers parallel to the
stratification. The hydrodynamic flow is assumed to be stationary and stabilized, and subject to Darcy's linear law.

Elementary analysis shows [1—3] that, in conditions of mass transfer in a filtration flow with layers lying above
and below, and with values of the Peclet diffusion number such as occur in practice (NPe ~ 10°-10°%), the curvature of
the concentration distribution in the direction of the filtration flow movement can be neglected in comparison with the
curvature of the concentration distribution in the transverse direction, i.e., transfer in the permeable layers occurs
primarily by forced convection, and in the relatively impermeable layers, as a result of molecular diffusion in the
free pore space.

In accordance with the above assumptions, the equations of mass transfer for the permeable and relatively
impermeable layers may be written, respectively, as
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Here, n,_,D,_ are the effective porogity and coefficient of molecular diffusion in the relatively impermeable
layers lying, respectively, above or below the permeable layer in question, the ordinates of the corresponding
boundaries being, respectively, z,, and z._; my and ngy are the thickness and effective porosity of the permeable layer;
vy is the velocity of the filtration flow, moving in the direction of the x; coordinate (see the figure); ¢, and ¢,_ are the
relative concentrations of the solute in the permeable and relatively impermeable layers; tis current time; and ng and
Cy are the means obtained by integration over the interval [z, ; =,,].

To complete the statement of the problem, suitable boundary conditions have to be found for systems {0.1) and
(0.2), in which the numbers of equations correspond to the numbers of the two types of layer; in particular, a boundary
condition of the fourth kind is assumed to be satisfied on the boundary of the filtration flow with a relatively
impermeable layer.

1. Isolated two-layer medium. Consider an isolated system consisting of two horizontal layers of essentially
different permeabilities such that our above assumptions remain valid. In other words, we confine ourselves here to
solution of the "interior" problem; this will enable us to describe the process most fully in the "pure form,"
independently of the external conditions.

After imposing "impermeability" conditions on the upper and lower boundaries of the system and introducing the
generalized independent variables
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Egs. (0.1) and (0.2) for the permeable and relatively impermeable layers may be written, respectively, as
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Here m_ is the thickness of the relatively impermeable layer.

The system of equations (1.2) is completed by means of the conditions
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Laplace-transforming system (1.2) and using the zero initial conditions (the first of Eqs. (1.3)), we get
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by the Carson-Heaviside transformation.

The general integral of the second of Egs. (1.4) can be written as
U, = Ash(Vpy) -+ Beh (V py) (1.5)
Hence, using the second of conditions (1.3), the first of Eqs. (1.4) reduces to the form
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Finally, using the third of conditions (1.3), the solution of the problem for the permeable layer in the image
space is found to be

Us(n, p)=exp [—q Vp th ¥l 1.7
The integral form of the function whose Laplace transform is (1.7) can be found from Mellin's inversion formula
a+ioo
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It is easily shown that the integrand of (1.8) is single-valued throughout the region of the complex variable p, has
a simple pole at p = 0 with residue unity, and has an infinity of essential singularities p), located on the negative real
axis:

Pr=— Y Qk + 12 (k=0,1,2,..)

In addition, the integrand satisfies Jordan's lemma, whence, applying the residue theorem, (1.8) can be written
as a series in 6~-functions of a zero argument and their derivatives with respect to some parameter (see [4] for the
relevant definitions).

A more convenient integral form, from the point of view of numerical computations, is

chz4cosz
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which may be obtained from (1.8) by a series of elementary transformations.
Next, using (1.5) and the second of conditions (1.3), we obtain the expression
U, (g, p) = Us(n, p2li=n Vo (1.10)
¢h ¥Vp
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for the image of the concentration in the relatively impermeable layer.

Hence
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Here and below,; ¢; ¢ =0,1,2, 3) denote the 6-functions.

Using (1.10) and (1.11), we can write the diffusion flow in the relatively impermeable layer as
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In addition, starting from the first of Eqs. (1.2) and (1.9), the diffusion flow in the relatively impermeable layer

is
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From (1.10), the image of the integral-mean value of the concentration in the relatively impermeable layer is
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The corresponding inverse transform can be written as
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or, recalling (1.6) and (1.9),
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2. "Open" two-layer medium. Let us consider in general terms the solution of the analogous problem for a two-
layer medium when an ideally "wettable" medium lies beyond the outer boundary of the relatively impermeable layer,
so that an open system is obtained. In other words, the concentration at the outer boundary of the two~layer system is
identical with the concentration of the surrounding medium, which, in turn, is assumed to be constant in space and
time. The boundary condition for the outer boundary (1.3) now becomes

C(d, n, 1y =0 (2.1)

whence, using (1.5) and the first of Eqs. (1.4), the image of the concentration in the permeable layer is
Uy(n, p) = expl—nVp cth} pl (2.2)
The inverse of the Laplace transform (2.2) can be written in a form similar to (1.9). Typically, the limiting

solution of our problem is
lim Cy = ™™ (2.3)
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Further, using (1.5) and condition (2.1), we obtain the image

U, (g p)="Usm, p)Sh—(zh_f,)TV” (2.4)

Hence the concentration in the relatively impermeable layer is
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The image of the diffusion flow through the outer boundary of the relatively impermeable layer is
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The diffusion flow in the relatively impermeable layer is
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The image of the integral-mean value of the concentration in the relatively impermeable layer may be written as
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whence the original is
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3. Asymptotic expansions. It is easily seen, from image (1.7), that the asymptotic form of the solution when 7
and n are small is

Co(M, )= Lt {exp[— 1V p]} = erfc [?;',—1—:] (3.1)

It should be mentioned that solution (3.1) was obtained by Lauwerier [3] for the case of an infinitely thick,
relatively impermeable layer.

The concentration in the relatively impermeable layer and the diffusion flow in this layer are then, respectively,

C. (y,m, v) = erfe [2’1}3] (3.2)
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These asymptotic forms are virtually always applicable (within an error of 5%) when T < 0.25, regardless of the
values of 7 and y. Expansions (3.1) and (3.3) are also applicable for arbitrary values of 7 when 5 < 0.1, and expansion
(3.2) when 5 + y < 0.1. But an asymptotic expansion can be written for the concentration in the relatively impermeable
layer, for which no extra restriction on y is required. For this, expansion (3.1) is simply substituted into (1.11).

A second asymptotic expansion of the solution may be obtained from the following considerations. Recalling the
general theory of meromorphic functions, image (1.7) may be written as

2P < pt2
Uo(n p) = exp[ =5y Eﬂ » T (5-4)
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The series in (3.4) is uniformly convergent to unity in a circle of radius Ipl = 2. Hence the asymptotic expansion
of image (3.4) may be written as
2
U ~ —_n 2P .
o( P) = exp|— n - | (3.5)

Further,
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where Iy(x) is the zero-order modified Bessel function of the first kind; the solution can be written as

Co(n, D =J (21, 27) (3.7)

The function
g
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[

was obtained by Arzelius [5] and Schumann {8] and was very fully investigated by Goldstein [7—11].
It can be shown that solution (38.7) is obtainable directly from the system of equations (1.2) by putting

8

—5_51 o 2(C*— Cy) (3.9)
where C:_ is the value of the concentration in the central section of the relatively impermeable layer. Equation (3.9)
presupposes a linear law of mass transfer, analogous to Newton's law, at the boundary, and in addition, a condition
that the relatively impermeable layer have infinite diffusion conductivity must be introduced into the initial system. In
other words, the initial system (1.2) must take the form

aC IC.*
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The following expressions for the integral-mean values of the concentration in the relatively impermeable layer
and the diffusion flow in this layer may be obtained from the image (3.5): .
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Numerical analysis shows that the asymptotic forms (3.7), (3.11), and (3.12) can be used in practice (within an
error of 3%) when 7 > 7 > 0.2,

It may be seen from the Laplace image (2.2) that the asymptotic forms of the solution in the problem of an open
two-layer medium in which the parameters n and 7 have small values are the same as the corresponding forms (3.1),
(3.2), and (3.3) for an isolated two-layer medium. These solutions are practically useful (within an error of 5%) when
T < 0.15 and 5 and y have arbitrary values, and also when 5 + y > 0.05 and 7 has arbitrary values.

The second asymptotic forms of the solutions for an open two-layer medium may be obtained by a similar-
procedure to that used for an isolated two-layer medium. Let us write image (2.2) as

o0
- 2P p+6 3.18

Uo(n, p) = exp [—n np+ﬁéop+kznz] (3.13)

The series in (3.18) is uniformly convergent to unity in a circle of radius Ip| = 6. Hence the asymptotic form of

the concentration in the permeable layer of the open system is
(3.14)
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The remaining asymptotic forms of the solutions in the open system problem may be found similarly.

4. Some generalizations. When the parameters n and T have small values and no restriction is imposed on the
capacities of the relatively impermeable layers, the golutions of the problem for strongly differentiated systems are
the same as (8.1). This makes it possible for mass transfer interaction between the different permeable layers via the
relatively impermeable layers to be ignored in practice under certain conditions.

Our scheme of stratified inhomogeneities should also degenerate with large values of  and 7. It may be assumed
that the process can then be described by a diffusion equation with a convective term:

ac ac 2c
N +Va—Digm=0 (4.1)

Here, the effective porosity and effective filtering speed in the quasi-homogeneous layer are, respectively,

N = Matebmie e (4.2)
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The coefficient D* in (4.1) is to be regarded as an effective diffusion coefficient, while the process itself might be
termed mass-transfer diffusion, by analogy with the phenomenon of convective diffusion.

Let us prove our assumption by writing the asymptotic form of image (3.5) as

Us(m, M) =~exp[(V/s— Vs + @+ 1) A)n] (4.3)

Here,

Us(n, W) =L Co(n, 0)}, a= 200 o Do

mn, ’ m,2n,
The inverse of image (4.3) may be written as
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The asymptotic form (4.4) of solution (3.7) may be used (within an error of 3%) when 7 > > 0.1 (or w > (a + 1) 3
n > 0.1), i.e., in practice it can be used whenever expansion (3.7) is applicable.

Expression (4.4) is the solution of the diffusion problem (4.1) under the first and third of boundary conditions
(1.3) if we put

D e (4.5)
" D (mo+my)

Let us dwell in more detail on the conditions under which expansions (3.7) and (4.4) can be used. To this end,
consider the physical significance of the inequality < 7. Using (1.1) and a number of transformations, the condition
under which (3.7) and (4.4) can be used may be written as

{myng + m n )z << Myt (4.6)

Hence the initiation of a quasi-stationary mode of mass transfer, characterized by the mass-exchange law (3.9),
is defined by the instant when the volume of filtered liquid passing through a fixed unit cross section x; exceeds the
total free capacity of the system. It was pointed out in [12] that, in the present terminology, this condition corresponds
to the instant when the sum of the integral-mean instantaneous values of the concentrations in the permeable and
relatively impermeable layers is equal to unity.

However, (4.6) is not a sufficient condition. The entry part of the flow must be characterized by a sharp
deformation of the diffusion flow in the relatively impermeable layer, caused by the high intensity of the mass-release
process. The relative magnitude of this part is uniquely determined by the condition for applicability of solutions (3.7)
and (4.4) when 5 > 0.2. Recalling (1.1), this condition is found to be

s m
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where Npg is the Peclet diffusion number, based on the characteristic dimension, namely, the thickness of the
relatively impermeable layer, and the coefficient of molecular diffusion in this layer.

A complete analogy appears here between the phenomenon discussed and the sharp restructuring that takes place
when a stable concentration profile develops in the liquid itself in the entry part close to the boundary of the considered
region. In addition, these parts are comparable in size, though the length of section (4.7) is actually rather too high,
owing to the fact that under our assumptions concentration profile deformation is completely ignored.

In conclusion the author thanks V. M. Shestakov for proposing the topic and valuable comments.
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